博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
无止境的内存优化——停不下的循环
阅读量:6170 次
发布时间:2019-06-21

本文共 4744 字,大约阅读时间需要 15 分钟。

小伙伴们是不是跟我一样,以为之前的内存优化已经完成了?不,这才刚刚开始……让我们一起进入这无休止的循环吧!

switch语句和查找表 / Switch statement vs. lookup tables

switch语句通常用于以下情况:

调用几个函数中的一个

设置一个变量或返回值

执行几个代码片断中的一个

如果case表示是密集的,在使用switch语句的前两种情况中,可以使用效率更高的查找表。比如下面的两个实现汇编代码转换成字符串的例程:

char * Condition_String1(int condition) {    switch(condition) {         case 0: return "EQ";         case 1: return "NE";         case 2: return "CS";         case 3: return "CC";         case 4: return "MI";         case 5: return "PL";         case 6: return "VS";         case 7: return "VC";         case 8: return "HI";         case 9: return "LS";         case 10: return "GE";         case 11: return "LT";         case 12: return "GT";         case 13: return "LE";         case 14: return "";         default: return 0;    }}
char * Condition_String2(int condition) {    if((unsigned) condition >= 15) return 0;    return          "EQ\0NE\0CS\0CC\0MI\0PL\0VS\0VC\0HI\0LS\0GE\0LT\0GT\0LE\0\0" +           3 * condition;}

第一个例程需要240个字节,第二个只需要72个。

循环终止 / Loop termination

如果不加留意地编写循环终止条件,就可能会给程序带来明显的负担。我们应该尽量使用“倒数到零”的循环,使用简单的循环终止条件。循环终止条件相对简单,程序在执行的时候也会消耗相对少的时间。拿下面两个计算n!的例子来说,第一个例子使用递增循环,第二个使用递减循环。

int fact1_func (int n){    int i, fact = 1;    for (i = 1; i <= n; i++)        fact *= i;    return (fact);}
int fact2_func(int n){    int i, fact = 1;    for (i = n; i != 0; i--)        fact *= i;    return (fact);}

结果是,第二个例子要比第一个快得多。

更快的for()循环 / Faster for() loops

这是一个简单而有效的概念,通常情况下,我们习惯把for循环写成这样:

for( i = 0;  i < 10;  i++){ ... }

i 值依次为:0,1,2,3,4,5,6,7,8,9

在不在乎循环计数器顺序的情况下,我们可以这样:

for( i = 10;  i--; ) { ... }

i 值依次为: 9,8,7,6,5,4,3,2,1,0,而且循环要更快

这种方法是可行的,因为它是用更快的i--作为测试条件的,也就是说“i是否为非零数,如果是减一,然后继续”。相对于原先的代码,处理器不得不“把i减去10,结果是否为非零数,如果是,增加i,然后继续”,在紧密循环(tight loop)中,这会产生显著的区别。

这种语法看起来有一点陌生,却完全合法。循环中的第三条语句是可选的(无限循环可以写成这样for(;;)),下面的写法也可以取得同样的效果:

for(i = 10;  i;  i--){}

或者:

for(i = 10;  i != 0;  i--){}

我们唯一要小心的地方是要记住循环需要停止在0(如果循环是从50-80,这样做就不行了),而且循环的计数器为倒计数方式。

另外,我们还可以把计数器分配到寄存器上,可以产生更为有效的代码。这种将循环计数器初始化成循环次数,然后递减到零的方法,同样适用于while和do语句。

混合循环/ Loop jamming 在可以使用一个循环的场合,决不要使用两个。但是如果你要在循环中进行大量的工作,超过处理器的指令缓冲区,在这种情况下,使用两个分开的循环可能会更快,因为有可能这两个循环都被完整的保存在指令缓冲区里了。

// 原先的代码for(i = 0; i < 100; i++){    stuff();}for(i = 0; i < 100; i++){    morestuff();}        //更好的做法for(i = 0; i < 100; i++){    stuff();    morestuff();}

函数循环 / Function Looping

调用函数的时候,在性能上就会付出一定的代价。不光要改变程序指针,还要将那些正在使用的变量压入堆栈,分配新的变量空间。为了提高程序的效率,在程序的函数结构上,有很多工作可以做。保证程序的可读性的同时,还要尽量控制程序的大小。

如果一个函数在一个循环中被频繁调用,就可以考虑将这个循环放在函数的里面,这样可以免去重复调用函数的负担,比如:

for(i = 0 ; i < 100 ; i++) {     func(t,i); }void func(int w, d) {     lots of stuff. }

可以写成:

func(t);void func(w) {     for(i = 0; i < 100; i++) {         //lots of stuff.     } }

展开循环 / Loop unrolling

为了提高效率,可以将小的循环解开,不过这样会增加代码的尺寸。循环被拆开后,会降低循环计数器更新的次数,减少所执行的循环的分支数目。如果循环只重复几次,那它完全可以被拆解开,这样,由循环所带来的额外开销就会消失。

比如:

for(i = 0; i < 3; i++){     something(i);}//更高效的方式:something(0);something(1);something(2);

因为在每次的循环中,i 的值都会增加,然后检查是否有效。编译器经常会把这种简单的循环解开,前提是这些循环的次数是固定的。对于这样的循环:

for(i = 0; i <  limit; i++) { ... }

就不可能被拆解,因为我们不知道它循环的次数到底是多少。不过,将这种类型的循环拆解开并不是不可能的。

与简单循环相比,下面的代码的长度要长很多,然而具有高得多的效率。选择8作为分块大小,只是用来演示,任何合适的长度都是可行的。例子中,循环的成立条件每八次才被检验一次,而不是每次都要检验。如果需要处理的数组的大小是确定的,我们就可以使用数组的大小作为分块的大小(或者是能够整除数组长度的数值)。不过,分块的大小跟系统的缓存大小有关。

#include
#define BLOCKSIZE (8) int main(void){ int i = 0; int limit = 33; /* could be anything */ int blocklimit; /* The limit may not be divisible by BLOCKSIZE, go as near as we can first, then tidy up. */ blocklimit = (limit / BLOCKSIZE) * BLOCKSIZE; /* unroll the loop in blocks of 8 */ while(i < blocklimit) { printf("process(%d)\n", i); printf("process(%d)\n", i+1); printf("process(%d)\n", i+2); printf("process(%d)\n", i+3); printf("process(%d)\n", i+4); printf("process(%d)\n", i+5); printf("process(%d)\n", i+6); printf("process(%d)\n", i+7); /* update the counter */ i += 8; } /* * There may be some left to do. * This could be done as a simple for() loop, * but a switch is faster (and more interesting) */ if( i < limit ) { /* Jump into the case at the place that will allow * us to finish off the appropriate number of items. */ switch( limit - i ) { case 7 : printf("process(%d)\n", i); i++; case 6 : printf("process(%d)\n", i); i++; case 5 : printf("process(%d)\n", i); i++; case 4 : printf("process(%d)\n", i); i++; case 3 : printf("process(%d)\n", i); i++; case 2 : printf("process(%d)\n", i); i++; case 1 : printf("process(%d)\n", i); } } return 0;}

经过惰性评估和二分分解煎熬,小编以为自己已经逃出生天了,哪知这才刚刚开始,小伙伴们,还请持续关注更新,更多干货和资料请直接联系我,也可以加群710520381,邀请码:柳猫,欢迎大家共同讨论

转载地址:http://pjnba.baihongyu.com/

你可能感兴趣的文章
JVM学习(二)垃圾收集器
查看>>
为hexo博客添加基于gitment评论功能
查看>>
java 库存 进销存 商户 多用户管理系统 SSM springmvc 项目源码
查看>>
Flutter - Drawer 抽屉视图与自定义header
查看>>
ERP系统的优势_库存管理软件开发
查看>>
如何内行地评价公链(一)从真正的不可能三角谈起
查看>>
BigDecimal 详解
查看>>
Shell实战之函数的高级用法
查看>>
NASA制做模拟系外行星环境 发现了热木星大气不透明的原因
查看>>
Slog67_后端框架Skynet之Makefile解读
查看>>
iOS ShareSDK桥接技术
查看>>
BAT面试须知:Java开发的招聘标准
查看>>
WeUI for 小程序–使用教程
查看>>
[vuex] unknown action type
查看>>
深入浅出 Java 并发编程 (1)
查看>>
【神器】可视化创建骨架屏
查看>>
数组左边减去右边数值的最大差值
查看>>
SVN用法
查看>>
js中的promise和then
查看>>
队列组 iOS之多线程GCD(二)
查看>>